
Full-system simulation of distributed memory
parallel computers using Simics

Fco. Javier Ridruejo Jose Miguel-Alonso Javier Navaridas
Dep. of Computer Architecture and Technology, The University of the Basque Country

P. Manuel de Lardizabal, 1 (20018) Donostia-San Sebastian, Spain
franciscojavier.ridruejo@ehu.es j.miguel@ehu.es javier-navaridas@ehu.es

Abstract

In this paper we discuss environments for the full-
system simulation of multicomputers. These are
composed of a large collection of modules that
simulate the compute nodes and the network, plus
glue elements that perform communication and
synchronization. We present our own environment
based on Simics and INSEE. We reuse as many
Simics modules as possible to reduce the effort of
hardware modeling, and simulate standard
machines running unmodified operating systems.
We explain how experiments reveal unforeseen
interactions among all modules and components,
providing results that are difficult to interpret.
Another important issue is the synchronization
among simulators: a trade-off has to be found
between simulation speed and accuracy of results.

1. Introduction

The design of a supercomputer is a complex task
that comprises the selection and design of multiple
components, such as computing elements, storage,
interconnection network, access elements and the
software it uses, from the operating system to high
performance libraries and parallel applications.
Depending on budget and availability, elements
can be designed from scratch; often, however, off-
the-shelf components are reused, either directly or
modified to fulfill tasks different to those they
were designed for.

During the preliminary phases of design of a
supercomputer, elements are tested and evaluated
separately, in order to assess (and, if possible,
improve) their performance. These evaluations are
carried out using synthetic loads, based on

 This work has been done with the support of the
Spanish Ministerio de Educación y Ciencia, grant
TIN2004-07440-C02-02. Mr. J. Navaridas is supported
by a doctoral grant of the UPV/EHU.

statistical distributions, which allow for fast
simulations, but may not be truly representative of
actual workloads. Simulation speed is important in
this phase, in order to be able to explore a wide
range of options to help in the decision-making
process, choosing the more promising alternatives.

In subsequent design phases the simulated
model grows in complexity, and more realistic
evaluations are performed, mixing a complex
model of the component under evaluation with
simpler models of the rest of the system, usually
working with traces obtained in actual machines.
Traces are more realistic than synthetic
workloads, but may comprise some characteristics
of the system in which they were taken that are
not valid in the system under evaluation.

When system components have been chosen,
a validation of the whole design is required to
confirm that the behavior is as expected, and to
check that there are no undesirable interactions
between components that may have passed
unnoticed before due to the simplicity of models
and simulations. This validation is usually done
with full-system simulators made from scratch or,
in most cases, using different simulators for each
component of the system, and doing some glue
work to put them to work together.

Our interest is mainly focused on
Interconnection Networks for distributed memory
parallel systems, a kind of specific-purpose
network that allows compute nodes to interchange
messages with high throughput and low latency –
something that is required to run efficiently
parallel applications. In the rest of this paper we
will use “IN” as the acronym for interconnection
network, and multicomputer as a shorter way of
naming distributed memory parallel computers.

In this paper we describe the components that
take part in a full-system simulation of a
multicomputer, and our proposal that mixes two
very different simulators, Interconnection
Network Simulation and Evaluation Environment
[16] (INSEE for short) in charge of the IN, and
Simics [7], used to simulate the compute nodes.

We also discuss several other approaches to
interface these two classes of simulators, and
problems that may arise when doing full-system
simulation, some due to reutilization of
components of the simulated hosts, and some due
to unexpected interactions between modules.
Moreover, we will explain the complexity of fine-
tuning all components and their interfaces, in
order to find a trade-off between simulation
accuracy and resource usage (simulation time).

The rest of the paper is organized as follows.
In section 2 we review related work. Section 3
explains the elements that can take part in a full-
system simulation of a multicomputer, as well as
some approaches to glue together an IN simulator
with the simulators of the compute nodes. Section
4 is about options to synchronize these simulators.
Section 5 describes our simulation environment.
Section 6 describes some experimental work done
with this environment, and identifies some issues
detected. Finally, in section 7 we enumerate the
conclusions of this work.

2. Related work

There are many other research groups around the
world interested in full-system simulation.
However most of them are only interested in
either the performance evaluation of workloads on
servers, or in the assessment of a particular micro-
architectural improvement. We can find several
full-system simulators in [9].

When evaluating parallel computers, models
used for the IN are often too simplistic. Most tools
implement networking systems based on Ethernet,
which is valid for most of the usual performance
evaluations of server systems that run OLTP (On-
Line Transaction Processing) workloads. As far as
we know, none of them implement a sophisticated
IN such as those used in high-performance
clusters or massively parallel processors.

It would be possible to integrate sophisticated
IN models inside available full-system simulation
tools; however, IN simulators are already there as
standalone tools (SICOSYS [14], the Chaos
Router Simulator [2], FlexSim [17] and many
others). Instead of starting from scratch, designing
a sophisticated Simics module of the target IN, it
would be easier for designers to make available
tools collaborate. For example, SICOSYS can
interface with RSIM [13] to do full-system

simulation of shared-memory parallel computers,
providing an accurate timing model. However,
this setup consumes a huge amount of resources
(memory, CPU time) and only allows for the
simulation of tens (a few hundreds at most) of
interconnected compute nodes.

GEMS [8] and SIMFLEX [4] are based on
Simics. The Simics environment provides the
system simulation, and the other tools provide an
accurate timing model which allows doing a high-
fidelity performance evaluation of systems. This is
required because Simics timing is a very simple
mechanism in which all instructions and memory
accesses take the same time. These tools in
combination do accurate performance evaluation
of shared-memory parallel computers via full-
system simulation. They have detailed
multiprocessor memory systems but lack detailed
I/O models and multiple-system capability.

As we can see, these tools are heavyweight,
and focus on shared-memory machines. Our
interest is on multicomputers, and we already use
INSEE as a simulation environment to evaluate
proposals for the INs used in this kind of
architectures. The interaction of INSEE with
Simics, the tool of choice to provide full-system
simulation of computing elements, provides a
great environment to experiment with cluster and
MPP technologies.

3. Interfacing IN and node simulators

There are many possible approaches to perform
full-system simulation of multicomputers. In Fig.
1 we can observe a collection of components that
take part into the simulation. Some of them are
pure software, some others are also software, but
simulate pieces of hardware.

One instance of an IN simulator simulates the
flow of packets through a network. Several
instances of node simulators simulate in detail the
operation of the compute elements. The elements
that are of interest for our purposes are: (1) A NIC
that interfaces with the IN; actually, this is a
software module that simulates the NIC. (2) A
driver, in kernel space, for that NIC. (3) A
protocol stack, in kernel space, providing higher-
level access to the IN. (4) A library on top of that
stack, providing the MPI API and run-time. (5) A
process of a parallel application.

Additionally, the simulation environment

includes a synchronization module that make all
simulators advance in synchrony, and a traffic
manager module that allows the interchange of
information (packets) between node and IN
simulators, making format translations if required

Now we focus on the different mechanisms
available to implement the traffic manager.
Synchronization will be discussed later.

3.1. Substitution of the NIC driver

The first option is to substitute the NIC driver
with another one that intercepts network traffic
and passes it directly to the Traffic Manager. The
main advantage of this option is that we can reuse
the NIC model that comes with the full-system
simulator, and also the Linux protocol stack.
However, this approach has the disadvantage of
requiring us to program a network driver for
Linux that must register itself in the kernel as a
general network driver. Furthermore, this driver
must interact properly with the used protocol stack
because otherwise it would be impossible to reuse
it. Note that the main trick here would be to have
a driver running in a simulated machine interact
with an external module running in the simulation
environment.

3.2. Substitution of the NIC simulated module

Another option would be to implement our own
NIC module, adding capabilities to interact with
the Traffic Manager (sending and receiving
packets) but mimicking the operations of the
original one. Using this option we can reuse
protocol stack and NIC driver. However, we need
to implement all the details of the simulated
hardware, with all its control registers and low
level accesses (writes in memory mapped
registers, interruption handling, DMA accesses,

etc.) Neither this option nor the previous one
requires us to manipulate or re-implement the
protocol stack.

Usually full-system simulation environments
come with default hardware and drivers for that
hardware, like Ethernet NICs. Support for other
INs such as Myrinet, Infiniband or the torus
network of the Bluegene/L [1] is not readily
available. These environments provide
mechanisms to add new, user-designed hardware
modules, than can be integrated into the
simulators. If we have an accurate description of a
certain NIC, and we program a module that
simulates this NIC, we could reuse existing
software (drivers and protocol stacks) designed to
run on actual hardware. For example, if we
implement a very realistic Myrinet card module,
we could re-use the GM drivers and the MPICH
over GM MPI implementation. However, due to
the difficulty of doing this accurate hardware
modeling, this approach is often rejected, and
multicomputer experimentation is done using
default hardware (Ethernet) and protocol stacks
(TCP/IP-over-Ethernet), drastically simplifying
setting up the experiments.

3.3. Substitution of the full protocol stack

The third and most complex option is to program
the NIC module for the simulator, the driver to
run in Kernel space, and a full protocol stack –
including a MPI implementation – on top of it.
The NIC module would interface with the Traffic
Manager, and the driver would take advantage of
the (simulated) high-speed IN. The obvious
advantage of this option is that we would have full
control of the IN; experiments could be done
evaluating the hardware, the software, the MPI
implementation, or a combination. Results would
be very realistic—but only if we are able to
provide good-quality, bug-free software. This is,
in fact, the drawback of this option: the
implementation effort is huge, and difficult to
reuse. Any improvement in the simulated
hardware propagates upwards: it may require
driver changes, and probably MPI changes in
order to take advantage of it. We need, thus, to
find a trade-off between programming effort and
flexibility. Reutilization of components allows us
to use in our experiments good quality, well-
proven software, but at the cost of using off-the-

Fig. 1. Elements taking part in a full-system simulation

of a multicomputer

shelf components. The accurate simulation of a
completely new proposal for an IN would require
implementing the components that would be
required if the network hardware were real, plus a
detailed model of that hardware.

4. Synchronization mechanisms

In the previous sections we explained how full-
system simulation of multicomputers is carried
out via combination of a collection of different
simulators. These simulators are separate software
entities that have different views of the passing of
(simulated) time. This means that they have
different simulation clocks, with different time
units. They can even have different mechanisms
to make those clocks advance. For example,
Simics is event-driven and time is measured in
CPU cycles (whose translation to actual time
depend on the CPU speed), while INSEE is cycle-
driven and its unit of time is a more abstract cycle
(time needed to route and move a phit from the
input ports to an output port). Obviously,
mechanisms are required to coordinate and
synchronize those clocks, so that simulators for
nodes and IN advance at the same pace, as if a
global clock was in use. The synchronization
module takes care of this task.

The synchronization model can be strict or
relaxed. Strict models are unapproachable, in
terms of execution time, when performing a full-
system simulation of a multicomputer, because
they make exploitation of available parallelism (in
the simulation platform) almost impossible. Thus,
we only consider more relaxed models. In this
discussion we consider only two simulators: one
that takes care of nodes, and another one for the
IN. However, discussed mechanisms can be
extended to consider several, concurrent
simulators for the nodes.

One synchronization alternative is to allow the
simulators to advance in lock-step mode. The
nodes simulator advances for a given amount of
time (let us call it slice) and then stops. The IN
simulator starts its execution and simulates the
same amount of time (an equivalent one, if a
translation of time units is required). It then stops
and the nodes simulator resumes its operation.
Note that both simulators never run in parallel.

When a message is generated at a node, it is
stored (with a timestamp) at an interfacing queue.

Later, the IN simulator will simulate the same
time slice. It will process the queue, taking care of
this injection, at the right time. When the IN
signals that a message has to be delivered to a
compute node, again this event is stored at an
interfacing queue. However, we have a problem
here: that queue will not be processed until the
next slice. The nodes simulator cannot process a
message from the past, so all messages received
during a given slice will be processed at the
beginning of the next slice. In other words,
messages will suffer, due to this relaxed
synchronization approach, a false delay, ranging
from 0 to the duration of the slice.

The other alternative is by exploiting
parallelism in the simulation environment. We can
let both simulators advance in parallel, without
interchanging information. After consuming a
slice, both simulators exchange lists of events.
The nodes simulator passes the list of messages
generated at the slice just consumed, to be
processed by the network, and the IN simulator
passes the list of messages that have arrived to the
destination nodes.

Note how this approach introduces two
artificial delays: injection is delayed until the
beginning of the next slice. Delivery, as in the
previous option, is also delayed. Again, the
importance of these delays depends on the slice
duration. A second effect is that message
injections in the IN is done in bursts, at the
beginning of each slice, which may impose
unnecessary contention.

In both models, a very short slice length
would provide maximum fidelity, but at the cost
of stopping simulators very often. A long slice
substantially accelerates experimentation, but
introduces artificial delays that can have
important, negative effects on our measurements.

5. A proposal for full-system simulation
of multicomputers

We have chosen Simics [7] as the tool to
simulate the compute nodes that interchange
packets through a network. From the options
described in Section 3, we have chosen the second
one: we have substituted the module that models
an Ethernet NIC (a DEC21143), using another one
almost identical, but capable of communicating
with an external Traffic Manager module.

INSEE provides a flexible environment to

perform simulations of IN. It consists of two main
modules: a cycle-driven, functional simulator of
interconnection networks (FSIN), and a traffic-
generation module (TrGen). The later module
allows us to feed simulations with three different
kinds of workloads: synthetic traffic patterns
defined by statistical distributions, traces obtained
from actual parallel application executions and
full-system simulations as described in this paper.

In our experiments we will present results for
64-node rings. We will explain later the reasons to
make this unusual choice. The network is
composed of a collection of routers, each of one is
connected to a two neighboring routers and to a
compute node. Fig. 2 represents a model of these
routers. Each physical channel of the router is
shared by three virtual channels (VCs): an Escape
channel (governed by the bubble routing rules
 [15]), and two adaptive channels.

Note that a ring has just one minimal path
from source to destination, so packets cannot
adapt. Thus, the only difference between the

Escape VC and the other two is that accesses to
the adaptive VCs are not restricted by the bubble
rules. Each node is able to simultaneously
consume several packets arriving to the reception
port. There are two injection ports, and the
interface should perform a pre-routing decision:
packets moving towards the X+ axis are stored in
the I+ injection port, and those towards X– go to
the I– injection port. Transit and injection queues
are able to store 4 packets of 16 phits (unit of
transit through the wires) each. Phit length is 4
bytes, so the link bandwidth is 32 bits per cycle.

Regarding the simulation of the compute
nodes, we use 8 instances of Simics, each one
simulating 8 nodes. Each node runs a full Red Hat
7.3 operating system, and can be configured to use
some MPI implementations [12]. For this work we

chose MPICH [10] because it is widely used and
supports several protocol stacks, depending on the
underlying IN (Ethernet, Infiniband, Myrinet, …).
As we use an Ethernet-like simulated NIC, we use
the P4/TCP/IP/Ethernet protocol stack.

In a real multi-computer the flow of
information between two application processes is
as follows. Whenever a node wants to send a
message to another, this message passes through
several software layers to build one or many
adequately formatted packets. First, the message
is segmented and encapsulated in kernel space by
a protocol stack (in our case TCP/IP/Ethernet).
Then the driver of the NIC injects the generated
packets into the network interface card that, in
turn, injects the packets into the IN. When a
packet arrives from the IN to a NIC, the driver is
signaled and a process to obtain the original
message (maybe reassembly several packets) is
performed, in order to deliver the message to the
right application process.

In our environment everything is as described
here, with a few exceptions. See, in Fig. 3, the
collection of components taking part in the
simulation. The network is not a real Ethernet.
Instead, it is simulated by FSIN. The hardware
module that simulates the DEC21143 fast
Ethernet NIC receives a collection of packets
(actually, Ethernet frames) that are used, with the
help of the Traffic Manager, as workload for
FSIN. The interchange of workload is performed
using an actual network because INSEE and
Simics run on different machines.

Packets are received by the TrGen module in
INSEE that is in charge of providing the workload
for FSIN. TrGen puts a received packet into the
right injection queue at the corresponding FSIN
router. Then, FSIN simulates the way that packet
travels through the network, sharing its resources
with other packets, and delivers it to the
appropriate destination router. When this happens,
the packet is sent back to TrGen, which uses the
Traffic Manager to inject it into the NIC at the
destination node. When a packet is injected at a
(simulated) NIC, this arrival causes an
interruption that is attended by the NIC driver.
The rest of the process that end with a message
being received by an application process is exactly
the same that happens with a real multicomputer.

The synchronization among all the Simics
instances and INSEE is done at two levels. Simics

Fig. 2. Model of router simulated by FSIN for 1D

networks, with a detailed view of the X+ input port
showing the 3 virtual channels that share its link.

incorporates its own synchronization mechanism,
which is used to coordinate the eight computers
simulated by each Simics instance. This is done in
round-robin fashion: each node runs for a specific
number of cycles, then the next node and so on.

The second level of synchronization is among
Simics instances and INSEE, in a lock-step way,
using a client-server model. Each instance of
Simics includes a synchronization client, and
INSEE includes a synchronization server. We can
see these two modules in Fig. 3. A
synchronization client allows a Simics instance to
run for a pre-defined number of cycles (slice).
After completing the slice, the Simics instance
(thus, all the nodes simulated by it) stops, and a
timestamp signal is sent to the synchronization
server. During a slice, computing nodes can send
messages to other nodes, but those are stored in a
synchronization queue.

 When the synchronization server has received
timestamp signals from all the Simics instances,
INSEE runs for a number of FSIN cycles (a slice),
routing and sending the received messages to their
corresponding destinations, before sending, via

multicast, a continue signal to all the clients –
which allows the Simics instances to resume their
executions.

Remember that this synchronization
mechanism allows network injections to be
simulated precisely, but deliveries are artificially
delayed until the start of the next slice. The main
difficulty here is to find a trade-off between the
high execution speed provided by long slices and
the accuracy obtained from short ones.

6. Experimental work

The environment described in the previous section
has been used to study the effects of network-
based congestion control in the execution speed of
MPI parallel applications. Congestion may appear
when the utilization of resources inside the IN is
close to its limits; its negative effects include
throughput and delay degradation. If no action is
taken when congestion appears, it soon spreads
through the whole network. Congestion control
techniques usually limit packet injection as soon
as the network presents signs of congestion. There
are different ways of diagnosing these signs and
techniques to avoid congestion, based on global
knowledge like in [18], distributed like RECN [3]
or based on information of the local router buffers
like LBR [5]. The torus network of the IBM
BlueGene/L [1] includes a mechanism that works
prioritizing in-transit traffic—we call this IPR (In-
transit Priority Restriction).

In an initial set of experiments, we evaluated
several of these congestion control mechanisms
for INs using trace-based traffic, obtaining some
predictions of performance improvements. Then,
we used our full-system simulation of IN to
validate these predictions – see [12] for the full
details. In particular, we studied the effects of IPR
on a ring of 64 nodes with multiple injection
sources. The number of nodes (64) is a
consequence of the availability of resources to
obtain actual traces and run the full-system
simulation environment. The choice of topology, a
ring (instead of a more reasonable 8x8 torus) is
because we want to study network congestion, and
a ring is more prone to congestion than a 2D
torus—for the same number of nodes.

Trace-based and full-system simulation were
performed using the A class of NAS Parallel
Benchmarks [11] (NPB), a well-known, allegedly

Fig. 3. Elements of our full-system simulation

environment that simulates an MPI application running
on top of an INSEE (simulated) network.

IPR Average time relative to Base case

0.6

0.7

0.8

0.9

1

1.1

1.2

BT CG IS

Trace-driven
Execution-driven

Fig. 4. Relative times to complete a run of NPB’s BT,

CG and IS, and 99% confidence intervals.

representative set of parallel application
workloads often used to assess the performance of
parallel systems. The details of the full-system
simulation were as follows. The system was
composed by 64 Intel Pentium-4 processors,
running at 200 MHz (1 Simics cycle = 5 ns), with
64 MB of RAM. The slice is 200 INSEE cycles,
equivalent to 1000 Simics cycles; this results in a
link bandwidth of 1280 Mb/s, approximately the
speed of a Gigabit Ethernet.

We can see in Fig. 4 the relative average times
predicted by trace-driven simulation and the
unexpected results in our full-system simulator.
99% confidence intervals are also plotted. These
were much better than those predicted by traces.

We analyzed the causes of this mismatch, and
found it in some undesirable interactions between
host-based congestion control (performed by the
TCP implementations at the hosts, see Figure 2)
and the network based congestion control we were
evaluating, in this case IPR. Our trace-based
simulation did not include TCP, so these
interactions were not taken into account.

Without IPR, application execution times
were negatively affected by TCP’s wrong
estimation of buffers, retransmissions and slow
start protocol [6], that made the whole execution
very slow in saturated networks. In contrast, when
IPR was applied, jitter was reduced, and this helps
TCP to determine its timeout and buffer values, so
there were less retransmissions and slow starts.

Thus, IPR caused two overlapped effects: (1)
For most applications, it accelerated the flow of
packets through the IN. (2) In all cases, it helped
TCP, allowing the applications to reach higher
throughput. This second effect was unexpected,
and was way more significant than the first,
explaining the mismatch in our predictions.

We can conclude that the reutilization of
components may look as a good idea, because it
reduces the time of setting-up an evaluation
environment and reduces programming errors, but
the price to pay may be too high: it may introduce
unforeseen interactions that can magnify, hide or
even invalidate the results obtained.

As we explained in the previous sections,
another issue when gluing together two different
simulators is to fine-tune the synchronization
among them. In particular, we need to define the
slice duration. We ran some additional
experiments to explore this issue. The IN was the

same described before and in [12], using again
MPICH/TCP/IP/Ethernet as the protocol stack.
However, we used a slower network. Results are
shown in Fig. 4. In the first row there were a set of
experiments tuned to run the benchmarks
executing 200 INSEE cycles per 10000 Simics
cycles. Experiments on second row were tuned to
run 20 INSEE cycles per 1000 Simics cycles –
meaning that simulators synchronized 10 times
more often, but the network speed was 128Mb/s in
both cases because they kept the same relation
between Simics cycles and INSEE cycles in every
step of execution.

This difference in synchronization frequency
had an impact on obtained results, due to the
additional delays introduced by the lock-step
synchronization. In the 10000:200 case, a packet
generated at a node may need to wait up to 9999
Simics cycles before being injected into the
network. This resulted in significant delay
variations. In the 1000:20 experiments, the worst-
case additional delay was reduced to 999 Simics
cycles – thus jitter was reduced too. We already
know that TCP is very sensitive to jitter, and we
observed it in the results. 10000:200 experiment
rows took much more simulated time than their
analogous 1000:20 experiments.

It is important to point out that 10000:200
experiments were faster (about 5 times) in terms
of actual time (not simulated time) because they
synchronize less often. But the price to pay for
being faster was a lower fidelity in timing, which
resulted in a worst performance of TCP.

Despite all problems listed above, our full-
system simulator has allowed us to validate, after
careful fine-tuning, our expectations about the
performance of congestion control, that were
tested previously with other methods like
synthetic traffic or trace-based simulation –
techniques that are significantly faster but are
considered less accurate.

7. Conclusions

Full-system simulation is a very complex issue,
more so when trying to simulate not a computer,

Slice duration BT CG IS
10000:200 base 4.64s 5.96s 4.21s
1000:20 base 2.51s 2.83s 2.87s

Table 1. Simulated execution times with different set of
synchronization parameters.

but a collection of networked machines –
especially if the network and the interfaces differ
from the traditional LAN devices available from
simulation environments. It is also a very
resource-consuming task. The simulation of a
cluster of computers may require an actual
machine with similar characteristics to the one
under study, and the execution of applications will
be several orders of magnitude slower.

As we have shown, full-system simulation of
multicomputers requires a large collection of
interrelated (software) components, which have in
many cases to be done from scratch, or re-used
from those provided by the simulation
environment being used. The reutilization allows
for important reductions of implementations effort
and errors, but implies some risks of using, for a
given purpose, components designed for different
(although related) purposes, and may lead to
inaccurate or even invalid simulation results.

The synchronization between compute nodes
and IN simulators also requires a very careful
design. A trade-off has to be found between
execution speed and simulation fidelity.

Our experience has shown that there are many
factors that can interfere in the quality of results:
selection of protocol stacks, including MPI
implementation, drivers, synchronization
modules… In fact, there are so many of these, that
sometimes is almost impossible to detect the
isolated effects of a given architectural proposal.

References

[1] N.R. Adiga et al., “Blue Gene/L torus
interconnection network.” IBM Journal of Research
and Development, Volume 49, Number 2/3, 2005.

[2] The Chaotic Routing Project at the U. of
Washington. “Chaos Router Simulator”. Available
(May 2007) at: http://www.cs.washington.edu/
research/projects/lis/chaos/www/chaos.html

[3] P.J. García, F.J. Quiles, J. Flich, J. Duato, I.
Jhonson, F. Naven. “Efficient, scalable congestion
management for interconnection networks”. IEEE
MICRO 26 (5): pp 52-66 Sep.-Oct 2006.

[4] N. Hardavellas et al., “SimFlex: A Fast, Accurate,
Flexible Full-System Simulation Framework for
Performance Evaluation of Server Architecture,”
ACM Sigmetrics Performance Evaluation Rev., v.
31, n. 4, Mar. 24, pp. 31-35.

[5] C. Izu, J. Miguel-Alonso, J.A. Gregorio. “Effects of
Injection Pressure on Network Throughput”, in
Proc. PDP 2006 14th Euromicro Conference on

Parallel, Distributed and Network based Processing.
Montbéliard-Sochaux - France- February 15-17
2006.

[6] V. Jacobson, "Congestion Avoidance and Control",
Computer Communication Review, vol. 18, no. 4,
pp. 314-329, Aug. 1988.

[7] P.S. Magnusson, et al. “Simics: A full system
simulation platform”. IEEE Computer, 35(2):50–58,
February 2002.

[8] M.M.K. Martin et al., “Multifacet’s General
Execution-Driven Multiprocessor Simulator
(GEMS) Toolset,” Sigarch Computer Architecture
News, v. 33, n. 4, Sept.05, pp. 92-99.

[9] C.J. Mauer, M.D. Hill, and D.A. Wood. “Full-
System Timing-First Simulation”, ACM
SIGMETRICS, June 2002.

[10] MPI Forum. “MPICH Home Page”. Available (May
2007) at: http://www-unix.mcs.anl.gov/mpi/mpich/

[11] NASA Advanced Supercomputing (NAS) division.
“NAS Parallel Benchmarks” Avail. (May 2007) at:
http://www.nas.nasa.gov/Resources/Software/npb.html

[12] J. Navaridas, F.J. Ridruejo, J. Miguel-Alonso.
"Evaluation of Interconnection Networks Using
Full-System Simulators: Lessons Learned". Proc.
40th Annual Simulation Symposium, Norfolk, VA,
March 26-28, 2007

[13] V.S. Pai, P. Ranganathan, and S.V.Adve. “RSIM:
An Execution-Driven Simulator for ILP-Based
Shared-Memory Multiprocessors and
Uniprocessors”. IEEE TCCA New., Oct. 1997.

[14] V. Puente, J.A. Gregorio, R.Beivide (2002).
“SICOSYS: An Integrated Framework for studying
Interconnection Network in Multiprocessor
Systems”, Proceedings of the IEEE 10th Euromicro
Workshop on Parallel and Distributed Processing.
Gran Canaria, Spain.

[15] V. Puente, et al. “The Adaptive Bubble router”, J. of
Parallel and Distributed Computing, v. 61, n. 9,
pp.1180-1208 Sep. 2001.

[16] F.J. Ridruejo, J. Miguel-Alonso. “INSEE: an
Interconnection Network Simulation and Evaluation
Environment”. LNCS, Vol. 3648 / 2005 (Proc.
Euro-Par 2005), pp. 1014 - 1023.

[17] SMART group at the U. of Southern California.
“FlexSim 1.2”. Available (May 2007) at:
http://ceng.usc.edu/smart/FlexSim/flexsim.html

[18] M. Thottethodi, A.R. Lebeck, S.S. Mukherjee,
“Exploiting Global Knowledge to Achieve Self-
Tuned Congestion Control for k-Ary n-Cube
Networks”, IEEE Transactions on Parallel and
Distributed Systems, vol. 15, no. 3, pp. 257-272,
Mar., 2004

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

